Biosynthesis of ethylene. 4-methylmercapto-2-oxobutyric acid: an intermediate in the formation from methionine.

نویسندگان

  • L W Mapson
  • J F March
  • D A Wardale
چکیده

The enzyme responsible for the conversion of methionine into a precursor of ethylene in cauliflower florets is a transaminase. The formation of 4-methyl-mercapto-2-oxobutyric acid by this enzyme has been shown. The oxo acid stimulates the synthesis of ethylene when added to floret tissue, and tracer experiments have shown that (14)C is incorporated into ethylene from the labelled oxo acid. The evidence is consistent with the view that the oxo acid is an intermediate in the formation of ethylene from methionine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precursors of ethylene.

Two pathways for biosynthesis of ethylene in higher plants have been postulated (10). One is associated with the breakdown of peroxidized linolenic acid and the other involves the degradation of methionine. Although the formation of ethyilene from peroxidized linolenate has been demonstrated in model systems catalyzed by Cu24, oxygen and ascorbic acid (10) and by an apple extract in the presenc...

متن کامل

An evaluation of 4-s-methyl-2-keto-butyric Acid as an intermediate in the biosynthesis of ethylene.

Stimulation of ethylene production by cauliflower (Brassica oleracea var. botrytis L.) tissue in buffer solution containing 4-S-methyl-2-keto-butyric acid is not due to activation of the natural in vivo system. Increased ethylene production derives from an extra-cellular ethylene-forming system, catalyzed by peroxidase and other factors, which leak from the cauliflower tissue and cause the degr...

متن کامل

Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1

We identify an Arabidopsis pyridoxal-phosphate-dependent aminotransferase, VAS1, whose loss-of-function simultaneously increases amounts of the phytohormone auxin and the ethylene precursor 1-aminocyclopropane-1-carboxylate. VAS1 uses the ethylene biosynthetic intermediate methionine as an amino donor and the auxin biosynthetic intermediate indole-3-pyruvic acid as an amino acceptor to produce ...

متن کامل

Wound-induced Ethylene Formation in Albedo Tissue of Citrus Fruit.

Excised albedo tissue of citrus fruit (Citrus unshiu and Citrus hassaku) produced ethylene at an increasing rate in response to wounding and aging. The application of 1-aminocyclopropane-1-carboxylic acid (ACC) enhanced ethylene production in both the fresh and aged tissues, but this increase was greater in the aged tissue than in the fresh tissue. ACC content was very low in fresh tissue but i...

متن کامل

Carbohydrates Stimulate Ethylene Production in Tobacco Leaf Discs : II. Sites of Stimulation in the Ethylene Biosynthesis Pathway.

Galactose, sucrose, and glucose (50 millimolar) applied to tobacco leaf discs (Nicotiana tabacum L. cv ;Xanthi') during a prolonged incubation (5-6 d) markedly stimulated ethylene production which, in turn, could be inhibited by aminoethoxyvinylglycine (2-amino-4-(2'-aminoethoxy)-trans-3-butenoic acid) (AVG) or Co(2+) ions. These three tested sugars also stimulated the conversion of l-[3,4-(14)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 115 4  شماره 

صفحات  -

تاریخ انتشار 1969